
Python Requests
 Sakshi Bansal
 Amrita University, India
 sakshi.april5@gmail.com

Mini DebConf - Women
 Barcelona

Why use Python on Web

● Can write scripts to automate interaction with a web-page.

● Can just use Python to fetch the HTML pages and process them.

● Can get and parse RSS feeds.

● Can create a web spider to test your site or search other sites.

● Uses Beautifulsoup (Python module) for parsing HTML

and XML files.

Urllib

● Urllib/Urllib2 are the default Python modules used for opening HTTP URL’s.

● Urllib cannot be completely replaced by urllib2 since the former has methods
that are absent in the later. Eg: urlencode()

● The documentation for both urllib and urllib2 is extremely difficult to
understand.

● Even for a simple GET request it is impossible to write a short script using
urllib2.

Python Requests

Introduction

● Requests is a simple, easy-to-use HTTP library written in Python.

● Lead developer is Kenneth Reitz who is also a member of the Python
Software Foundation.

● It can be used for various Operating Systems like Debian, Unix etc.

Parsing JSON

● Web pages usually have JSON embedded in their code.

● While receiving requests we often get response in JSON format.

● Requests have a built-in JSON decoder which helps in parsing JSON code.

● We can just import the JSON module.

a) How to know if the response is in JSON format

import requests

r = requests.get(“http://www.example.com”)

print r.status_code

print r.headers['content-type']

Output:

200

'application/json'

b) How to parse using JSON built-in module and Requests

import json

import requests

response = requests.get(url=url, params=params)

data = json.load(response)

json.load(response) - used for decoding the response

json.dump(request) - used for encoding request

Features

● Keep-Alive & Connection Pooling:

○ Keep-alive is available and automatic within a session.

○ There is a pool of connections and a connection is released for
only once all its data has been read.

● Cookies: We can get the cookies set by the server from the response
○ url = 'http://example.com/cookie'

r = requests.get(url)

 r.cookies['cookie_name']

○ We can also send cookies to the server:
■ url = 'http://example2.com/cookies'

 cookies = dict(cookie1='This_is_a_cookie')

 r = requests.get(url, cookies=cookies)

http://example.com/cookie

● Requests can automatically decode the response based on the header values.

● Using .encoding method we can change the encoding type.

● Supports various types of exceptions such as DNS failure, Invalid HTTP
response etc.

● Supports the entire restful API i.e, all its methods- PUT, GET, DELETE, POST.

 Python Requests
 v/s
 Urllib/Urllib2

Example 1: Making a POST request

1.1 using urllib2/urllib

import urllib
import urllib2

url = "http://www.example.com"
values = {"firstname":" abc ", "lastname":" xyz "}

header = {"User-Agent":"Mozilla/4.0(compatible;MSIE 5.5;Windows NT)"}

values = urllib.urlencode(values)
request = urllib2.Request(url, values, header)

response = urllib2.urlopen(request)
html_content = response.read()

Note: In the above example 2.1 we had to make a use of both the urllib and urllib2 modules in
order to write a script for a simple POST request.

1.2 using requests

import requests

values = {""firstname":" abc ", "lastname":" xyz "}

r = requests.post('https://www.example.com, data=values)

print r.status_code

print r.text

Thank You!!!

